Single Layer Winding Scheme (Code)

import Llibraries
import math

define inputs

number_of_phases=3

number_of_slots = int(input("Enter the number of slots: "))
number_of_poles = int(input("Enter the number of poles: "))

Enter the number of slots: 36
Enter the number of poles: 6

define a function to check the existence of single layer winding scheme.
def single_layer_checkPossiblity(number_of_slots,number_of_poles):
number_of_slots = int(number_of_slots)
number_of_poles = int(number_of_poles)
flag = @
import math

define a factor which helps in existance
gcdl = math.gcd(number_of_slots, number_of poles)
factor = number_of_slots/(3*gcdl)

define total number of coils
number_of_coils = float(number_of_slots/2)

coils per pole
coils_per_pole = float(number_of_slots/(2*number_of_poles))

coils per phase
coils_per_phase = float(number_of_slots/(2%*3))

define motor periodicity
motor_periodicity = float(math.gcd(number_of_slots,number_of_poles//2))

define number of spokes
number_of_spokes = float(number_of_slots/motor_periodicity)

if (number_of_poles%2 != © or factor.is_integer()== False or number_of_slots % 3
number_of_coils.is_integer()==False or coils_per_phase.is_integer()==False @
number_of_spokes.is_integer()==False or motor_periodicity.is_integer() == Fa
flag = 1

return flag

if single_layer_checkPossiblity(number_of_slots,number_of_poles)==0:
print('Winding is possible')

else:
print('Winding is not feasible')

Winding is possible

define total number of coils
number_of_coils = number_of_slots/2

coils per pole
coils_per_pole = number_of_slots/(2*number_of_poles)

coils per phase
coils_per_phase = number_of_slots/(2*3)

define coil span
coil_span = number_of_slots//number_of_poles

define motor periodicity or number of rotation
motor_periodicity = math.gcd(number_of_slots,number_of_poles//2)

define phase group
phase_group = number_of_slots/(4*number_of_phases)

define number of spokes
number_of_spokes = number_of_slots/motor_periodicity

define coil numbers
coil number = [i for i in range(1, (number_of_slots+2)//2)]

define coil pitch in both electrical and mechanical degrees
coil_pitch_mech = 360/number_of_coils
coil pitch_elec = (number_of poles/2)*coil pitch_mech

now define coil angles in both mechanical and electrial degrees
coil_angle mech = [n*coil pitch_mech for n in range(len(coil_number))]
coil_angle elec = [n*coil_pitch_elec for n in range(len(coil_number))]

make slot angle list named as theta
theta = coil_angle_elec

make a suitable List for periodicity handling
listl = []
iter_ =1
for i in range(int(number_of_slots/number_of spokes)):
temp = []
for j in range(int(number_of_spokes)):
temp.append(iter_)
iter_ +=1
listl.append(temp)

handling of odd length

arr = []

for ele in listl:
arr.append(ele[:1len(ele)//2])
arr.append(ele[len(ele)//2:1])

Now again assign arr to the listl which is in the required form.
listl = arr

convert slot angle between -180 to +1860 degrees
for i in range(9,int(number_of_coils)):
theta[i] = ((theta[i]+180)%360)-180

round-off theta to nearest integer
for i in range(len(theta)):
theta[i] = math.ceil(theta[i])

define slotin and slotout with the help of Llistl we got in previous step

slotin = [x for i in range(len(listl)) for x in listl[i] if i%2==0]
slotout = [x for i in range(len(listl)) for x in listl[i] if i%2==1]

initialize a Llist that should contains positive angle anf for negative angle add 3
thetai = [x+360 if x<0 else x for x in theta]

Now sort the positive relative slot angles
thetal = sorted(thetai)

Final step to select the phases with same logic used in double layer winding
Phase A selection
slotinl = []
slotoutl = []
setl= [False] * int(number_of coils)
for i in range(len(thetal)):
for j in range(int(number_of_coils)):
if(len(slotinl)== int(number_of_coils)//3):
break
else:
if thetai[j]== thetal[i]:
if setl[j] ==False:
slotinl.append(slotin[j])

slotoutl.append(slotout[j])
setl[j]=True

Phase B selection
slotin2 = []
slotout2 = []

for i in range(len(thetal)):
for j in range(int(number_of_coils)):
if(len(slotin2)== int(number_of coils)//3):
break
else:
if thetai[j]== thetal[i]:
if setl[j] ==False:
slotin2.append(slotin[j])
slotout2.append(slotout[j])
setl[j]=True

Phase C selection
slotin3 = []
slotout3 = []

for i in range(len(thetal)):
for j in range(int(number_of_coils)):

if(len(slotin3)== int(number_of_coils)//3):
break

else:
if thetai[j]== thetal[i]:

if setl[j] ==False:
slotin3.append(slotin[j])

slotout3.append(slotout[j])
setl[j]=True

print('motor periodicity :',motor_periodicity)
print('number of spokes :', number_of_spokes)
print('coil pitch in mechanical degrees',coil_pitch_mech)
print('coil pitch in electrical degrees',coil_pitch_elec)

print('coil span :',coil_span)
print('coils per phase :',coils_per_phase)
print('coil per pole',coils_per_pole)
print('phase group :', phase_group)
print('coil_number: ',coil_number)
print('theta: ',theta)

print('slotin: ',slotin)
print('slotout: ',slotout)
print('Phase A In :',slotinl)
print('Phase A Out :',slotoutl)
print('Phase B In :',slotin2)
print('Phase B out :',slotout2)
print('Phase C In :',slotin3)
print('Phase C Out :',slotout3)

motor periodicity : 3

number of spokes : 12.0

coil pitch in mechanical degrees 20.90
coil pitch in electrical degrees 60.90
coil span : 6

coils per phase : 6.0

coil per pole 3.0

phase group : 3.0

coil_number: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
theta: [0, 60, 120, -180, -120, -60, O, 60, 120, -180, -120, -60, O, 60, 120,

-120, -60]

slotin: [1, 2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 25, 26, 27, 28, 29, 30]
slotout: [7, 8, 9, 10, 11, 12, 19, 20, 21, 22, 23, 24, 31, 32, 33, 34, 35, 36]

Phase A In : [1, 13, 25, 2, 14, 26]
Phase A Out : [7, 19, 31, 8, 20, 32]
Phase B In : [3, 15, 27, 4, 16, 28]
Phase B out : [9, 21, 33, 10, 22, 34]
Phase C In : [5, 17, 29, 6, 18, 30]
Phase C Out : [11, 23, 35, 12, 24, 36]

-180,

